Sewer systems

David Stránský D1076 David.Stransky@cvut.cz

Ivana Kabelková B703 Ivana.Kabelkova@cvut.cz

Schedule			
Lecture			
Introduction, urban water management, urban drainage, drained waters, types of sewer systems, materials, structures	David		
Wastewater + rainwater (flow + composition), design (rational method) + video Jochen Miller keynote ICUD2017	Ivana		
Rainfall monitoring	David		
Discharge monitoring	David		
Impacts - urban streams + Protective measures (tanks, SuDS, RTC)	Ivana		
Field trip - Biomonitoring	David		
Field trip – Sewer system	David		
Sustainable drainage systems (SuDS in detail)	David		
Urbanization and phosphorus cycle	David		
Urban flooding	invited		
Innovative systems	Ivana		
test			

Classification

- No special requirements regarding lessons attendance
- Correct answers 9 points
- We will add points from field trips and invited lecture to points from the test (1 point for each), i.e. maximum score is 12 points
- 11-12 points classification A; 9-10 p. classification B; 8 p. classification C; 7 p. classification D; 6 p. classification E; less than 6 p. test must be repeated

Literature

- Vladimír Krejčí a kol. Odvodnění urbanizovaných území – CTU library
- Willi Gujer –
 Siedlungswasserwirtschaft
- Willi Hager Wastewater hydraulics
- David Butler a John Davies Urban Drainage

Terminology

• Urban water management (UWM)

 Water resources – water treatment – water supply – collecting of waste waters - waste water treatment – discharging into receiving waters
 Stormwater management

Urban Drainage (UD)

- Sewer system is subsystem of urban drainage system
- Subsystems: Sewer system, waste water
- treatment plant, urban creeks, ground water

Urban drainage

- Complex field of tasks
 - Hydrology
 - Hydraulics
 - Chemistry
 - MicrobiologyTechnology
 - Hydrogeology
 - Civil engineering
 - Economy and management
 - System engineering
 - etc.

Urban drainage

Goals of lessons:

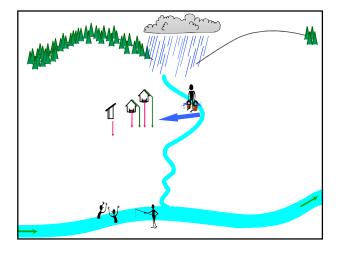
- To learn concept and context
- Understand processes in UD subsystems
- Main working methods (integrated approach, monitoring and modelling)
- To get acquainted with technical and nontechnical measures (in order to optimize UD functionality and minimize environmental impacts)

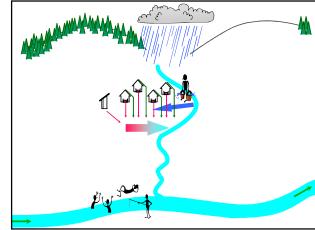
Introduction

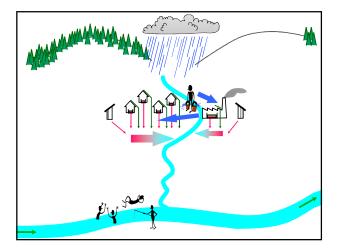
- Urban drainage as part of Urban Water Management (UWM)
- Urban drainage: past present future
- Types of drained waters
- Types of sewer systems

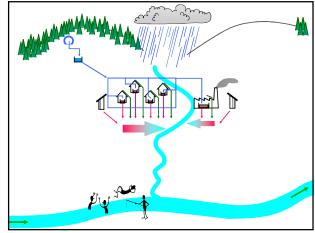
Urban water management

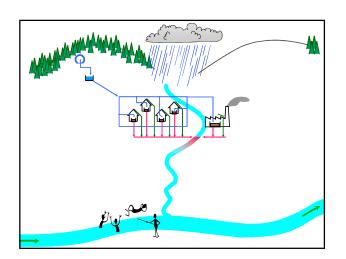
- Economical sector ensures services:
 - Drinking water, hygiene
 - Process water for industry
 - Drainage, treatment of wastewaters
 - Flood protection and fire water
 - Recreation and landscaping in urbanized catchment
 - Climate change adaptation

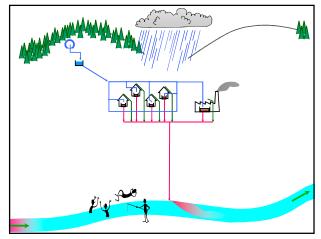

• Uses raw materials and sources:

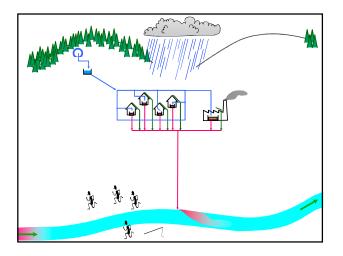

- Water and substances in water
- Construction materials
- Chemical substances and energy
- Environment as a donor and recipient
- Capital, human resources

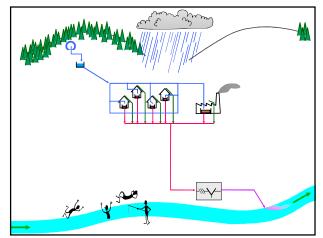

Urban water management

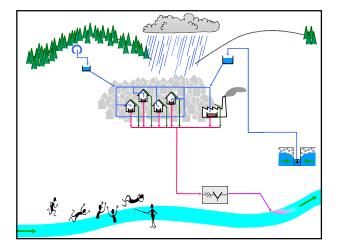

Evolution:

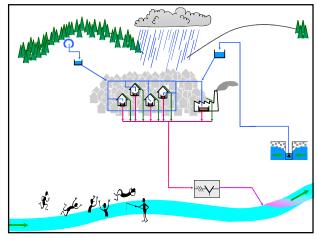

Closely connected with urbanization

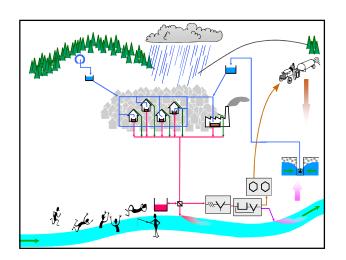


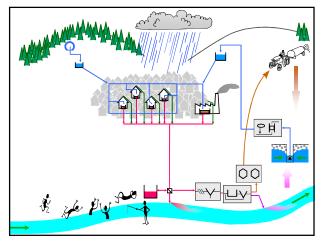


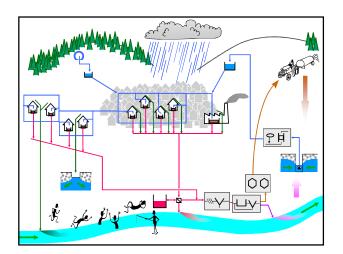


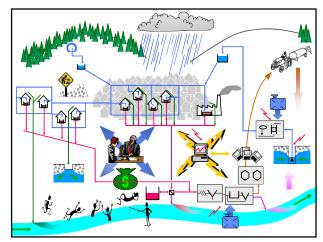












Urban drainage

Subject area definition:

- Part of UWM
- origin, transport and treatment of wastewaters
- Wastewaters effect on surface waters and water sources
- Main elements: sewer system, WWTP, surface waters, ground waters, SuDS devices

Urban drainage

Purpose:

- Inhabitants and area hygiene
- Protection of property against floods
- Surface waters
 – recreation and landscaping in urbanized catchment
- Protection of environment
- Climate change adaptation
- Living comfort

Urban drainage

Ensures the purpose by:

- Technologies (high-tech)
- Natural based solutions (low-tech)

Supported by:

- Administrative tools (legislative, normative, procedural)
- Economical tools

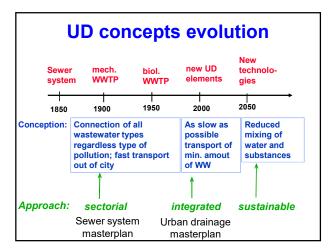
Urban drainage:

Compromise between conflicting interests

Protection of people against nature !

Hygiene, flood and drought protection

Protection of nature angainst people!


Surface waters and groundwaters protection, Protection of habitats and water related organisms

New (emerging) UD concept

- Opposite of present definition of UD
- Drainage mimicking/maintaining natural water regime as it was before urbanization
- Decreased surface runoff volume, decreased speed of runoff
- Higher protection of surface and ground waters
- Integrated approach to urban drainage

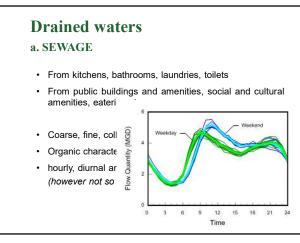
Sectorial approach Integrated approach Isolated assessment • All technical and natural elements of UD of problems and

- processes in sewer system, WWTP, surface and ground waters
- Emission strategy (no concern of local conditions)
- Technical (esp. structural) measures to protect surface watres
- assesed as a one complex
- Imission strategy, identification of problems in surface waters
- Structural and nonstructural measures to protect surface waters

• Value of infrastructure (2,500 inhab. community)		
Infrastructure type	Value in Mio EUR	% of entire infrastructure value
Public (town hall, fire department,)	6	7
Schools, incl. gym	10	12
Culture, sport (concert hall, football field,)	5	6
Retirement house	4	5
Public streets	10	12
Water supply	21	25
Urban drainage	28	33

Drained waters

- a. Sewage
- b. Storm waters
- c. Industrial waste waters
- d. Infectious waters
- e. Wet sweeping waters
- f. Infiltration/Inflow


Drained waters

a. SEWAGE

GREY WATER · From kitchens, bathrooms, laundries, toilets


BROWN WATER YELLOW WATER

- •
- From public buildings and amenities, social and cultural amenities, eateries etc.
- · Coarse, fine, colloid and dissolved substances
- · Organic character
- · hourly, diurnal and seasonal dynamics (not so large compared to storm waters)

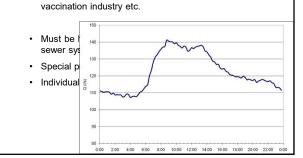
Drained waters b. STORM WATERS

- From atmospheric precipitation, that creates surface runoff
- · Wash-off of organic and inorganic pollution from urbanized surfaces
- Polluted runoff from: heavy traffic areas, industrial areas, truck parking lots etc.
- <u>Unpolluted runoff from:</u> non-metal roofs, low traffic areas, pedestrian zones, green areas, terraces etc.
- Significant dynamics •

Drained waters

c. INDUSTRIAL

- From production process (incl. small producers)
- From agricultural production
- · Pollution cannot exceed limits defined by authority
- Otherwise must be pre-treated prior to discharge to public sewer system


Drained waters

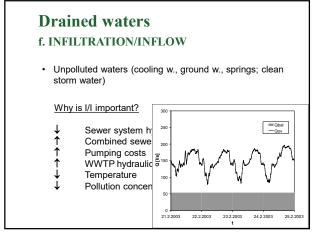
d. INFECTIOUS

- from hospitals, TBC sanatoria, microbiological labs, vaccination industry etc.
- Must be hygienically safe before discharge to public sewer system
- · Special pre-treatment technologies in hospitals
- · Individual dynamics

Drained waters d. INFECIOUS

• from hospitals, TBC sanatoria, microbiological labs,

Drained waters e. WET SWEEPING


- Water used for sweeping of streets, walkaways, parking lots etc.
- · Pollution similar to storm waters
- · Dynamics similar to runoff from low-intensity rainfalls

Drained waters f. INFILTRATION/INFLOW

Unpolluted waters (cooling w., ground w., springs; clean storm water)

Why is I/I important?

- Sewer system hydraulic capacity
- Combined sewer overflows
 Pumping costs
- Pumping costs WWTP hydraulic load
- ↑ WWTP hydraulic loa
 ↓ Temperature
 ↓ Pollution concentrat
 - Pollution concentration and treatment efficiency

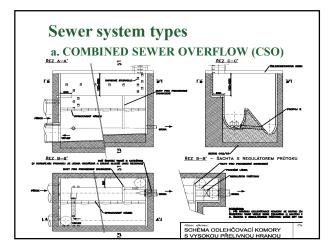
Drained waters WHAT SHOULN'T BE DISCHARGED

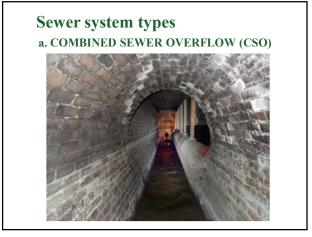
- 1. Dangerous substances, e.g. mercury, cyanides, metaloids ...
- 2. Radioactive substances
- 3. Infectious, carcinogenic, mutagenic etc. Substances 4. Poisons, explosives, caustics
 - 5. Pesticides, biocides and their derivates
 - 6. Narcotics
 - 7. Flamable substances
 - 8. Biologically stable tenzides
 - 9. Organic solvents
 - 10. Persistent mineral oils and motor, hydraulic etc. oils
 - 11.Anorganické P compounds
 - 12. Solid waste from kitchens (shredders), oils
 - 13. Used covers/bottles of dangerous substances
- 14. <u>Etc.</u>

Sewer system types Two basic types of sewer systems a. Combined sewer system b. Separate sewer system · Separate sanitary (foul) sewer system · Separate storm water sewer system

Sewer system types a. COMBINED SEWER SYSTEM

- · All types of drained waters together
- · Pipes must be underground
- Prevailing type technical benefits
- · Disadvantages hygienic and environmental unfriendly
 - Combined sewer overflows (CSO) waste water discharged into environment without treatment


Sewer system types


a. COMBINED SEWER SYSTEM

- Annual volume of sewage (24/7) >> annual volume of storm waters (5-8% of year)
- Peak discharge of sewage << peak discharge of storm waters
- Designed to storm water flow
- Dry weather flow taken into account only when it is more than 10% of wet weather design flow

Sewer system types a. COMBINED SEWER SYSTEM

COMBINED SEWER SYSTEM

Sewer system types a. COMBINED SEWER SYSTEM

- Increased flow during storm runoff = overflow of water to receiving waters
- Even there is often high dilution of sewage by storm water, faecal pollution is discharged
- CSO source of toxic and hydraulic stress
 → affects water communities of organisms
- turbidity, organic substances, temperature
 → impacts on natural self-treating processes in rivers

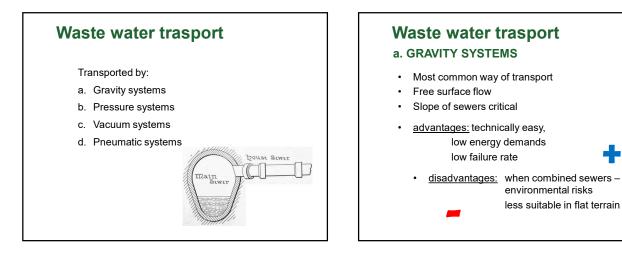
Sewer system types b. SEPARATE SEWER SYSTEM

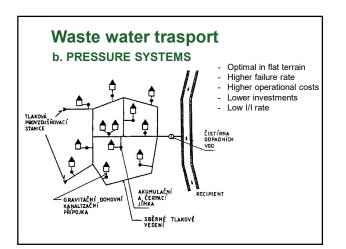
- · Storm water separated from the rest
- · Usually two independent sewer systems
- Separate sanitary (foul) sewer system

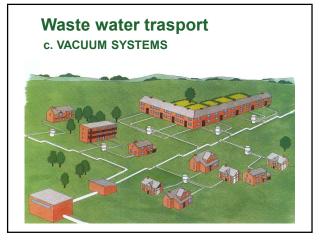
E

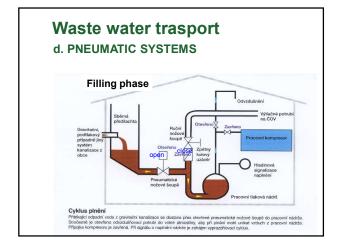
· Separate storm water sewer system

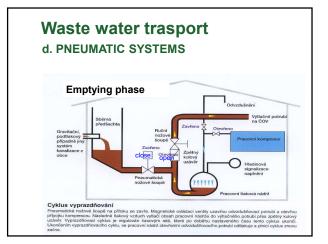
Sewer system types b. SEPARATE SYSTEM - SANITARY

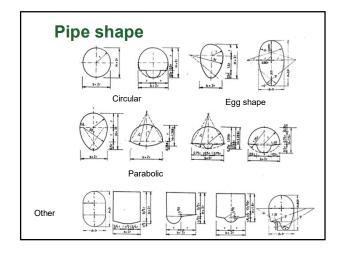

- Sewers must be underground
- Small diameter pipes
- Flow dynamics is not so violent = no CSO needed

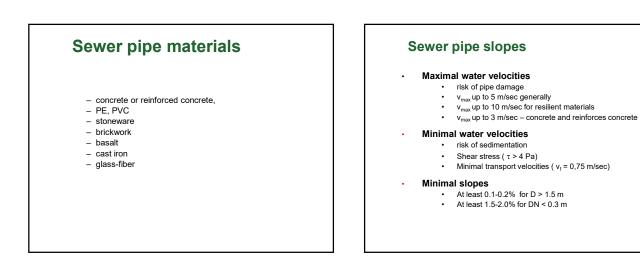

b. SEPARATE SYSTEM – STORM WATER

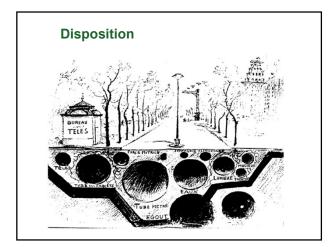

- Underground sewer or surface ditches
- Larger diameters than sanitary sewers
- Discharged to receiving water, usually no treatment is needed, retention to mitigate peak flows can be applied

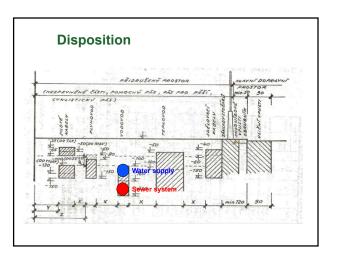


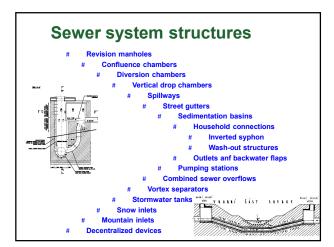

÷










Waste water trasport			
a. Pressure systemsb. Vacuum systemsc. Pneumatic systems			
Advantages	Disadvantages		
Effective wastewater transportation at minimum depth, minimising excavation for piping system	Needs expert design		
Independent from land topography	Needs a permanent energy source for the grinder pumps		
Less costs compared to a conventional gravity sewer	High capital costs		
Requires little water only for transporting the excreta	Requires skilled engineers operators		

